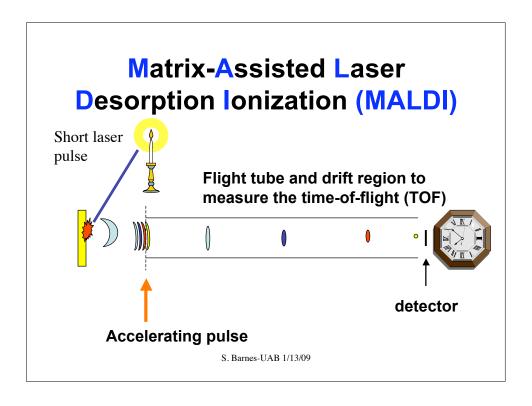
Application of mass spectrometry to the analysis and identification of peptides, proteins and other biological molecules

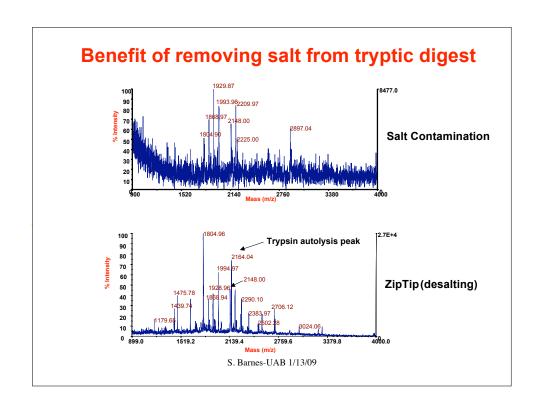

Stephen Barnes, PhD 4-7117

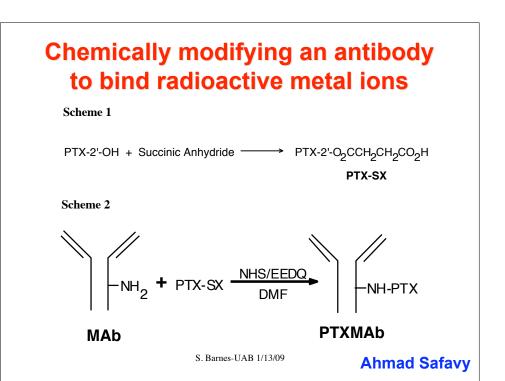
sbarnes@uab.edu

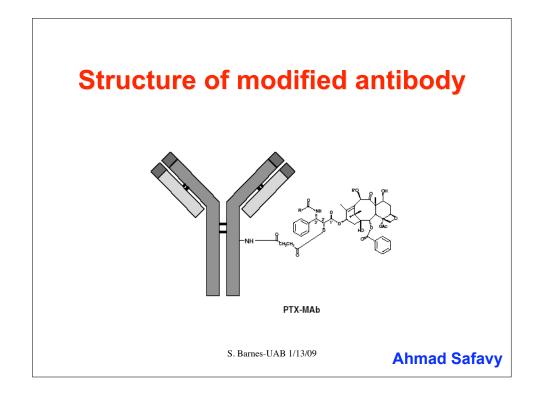
S. Barnes-UAB 1/13/09

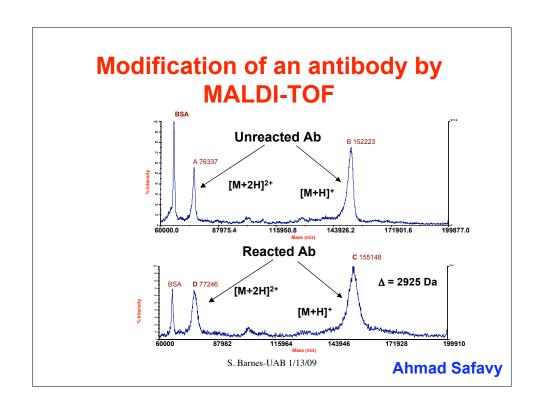
Overview

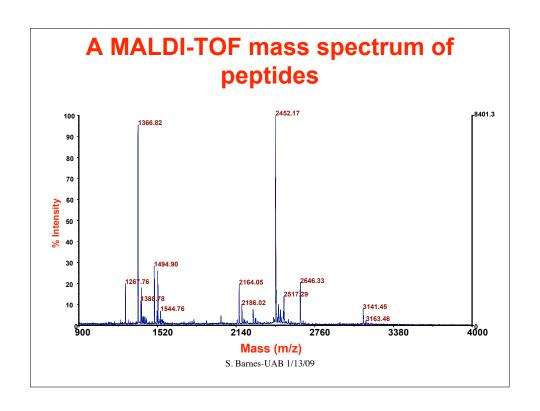
- MALDI-TOF MS
 - Protein modifications
 - Peptide mass fingerprinting
- Electrospray MS
 - Analysis of intact proteins
 - Molecular weight calculations
 - Max Entropy for MW estimation
- Peptide analysis
 - Purity ESI-MS is a revelation
- Integration of MS with LC and CE
 - Multidimensional LC of peptides
- Tandem MS
 - Identifying peptide amino acid sequences

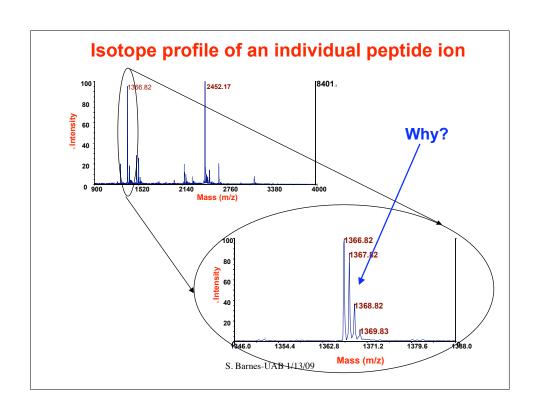


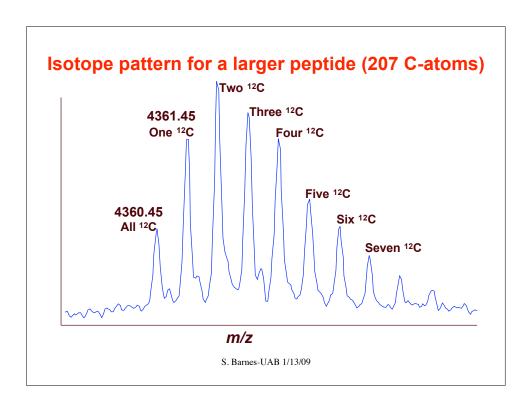

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)


- Advantages of MALDI-TOF
 - More tolerant to common buffers than ESI
 - High degree of sensitivity, moderate mass accuracy, and mass resolution
 - High mass compounds, i.e. proteins, PEG...
- Common Applications of MALDI-TOF
 - Masses of large proteins and other compounds
 - Enzymatic digestion profiles of proteins to establish their identity
 - Peptide sequencing (TOF-TOF)
 - In situ protein/peptide imaging

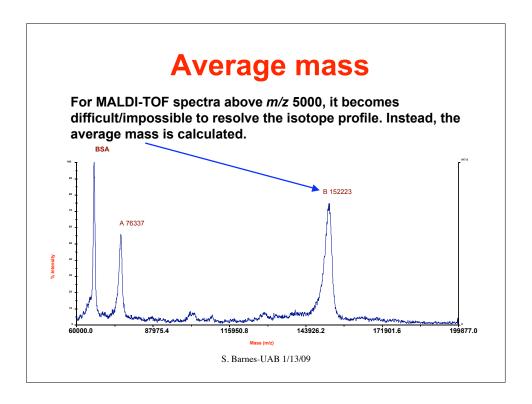

Factors from conventional experiments that impact MALDI-TOF analysis


- Tolerance of buffers/chemicals used in sample preparation
 - NaCl up to 150 mM
 - Urea up to 2-3 M (carbamoylation can occur!)
 - Guanidinium-HCl up to 2 M
- Tolerance of detergents
 - SDS up to 0.05%
- Staining Protocols
 - Whole proteins form adducts with Coomassie
 - Silver staining modifies selected peptides

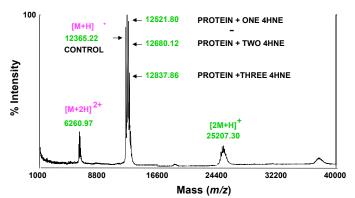




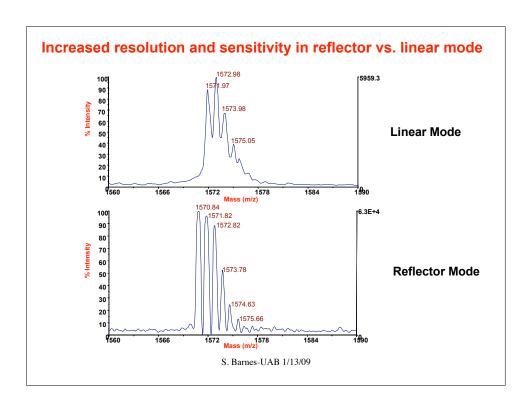
Stable isotopes of the most abundant elements found in peptides

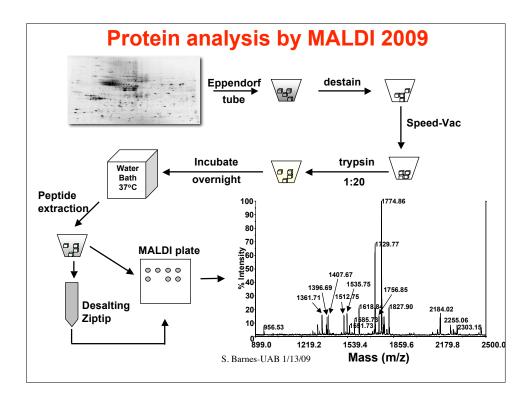

Element	Mass	Abundance
Н	1.0078	99.985%
	2.0141	0.015%
С	12.0000	99.89%*
	13.0034	1.11%*
N	14.0031	99.64%*
	15.0001	0.36%*
0	15.9949	99.76%*
	16.9991	0.04%*
	17.9992	0.20%*
S	31.9721	94.93%*
	32.9715	0.76%*
	33.9679	4.29%*
	35.9671	0.02%*

*Varies according to its source



How to represent the mass of compound?


- At high resolution where the isotopic peaks are fully resolved, then we can determine the monoisotopic mass for each one
- At low mass resolution (where the isotope peaks cannot be resolved) what is observed is the average mass



MALDI spectra usually contain only the **molecular ion [M+H]**⁺. The mass accuracy is approximately <u>+</u>1-2 Da. Hard to pick out the ¹²C isotope peak. The 4HNE Michael adduct should be 156 Da.

Peptide mass fingerprinting

- This method was developed because of the availability of predicted protein sequences from genome sequencing
- Proteins did not have to have been previously sequenced - only that the open reading frame in the gene is known - the rest is a virtual exercise in the hands of statisticians, bioinformaticists and computers
- However, remember the matching is only as good as the database content - this can change

Proteolytic enzymes used to hydrolyze proteins

The choice of enzyme largely depends on the nature of the amino acid sequence and the specific issue that is being addressed

- Trypsin cleaves at arginine and lysine residues
- · Chymotrypsin cleaves hydrophobic residues
- Arg-C cleaves at arginine residues
- Glu-C cleaves at aspartate/glutamic acid residues
- Lys-C cleaves at lysine residues
- V8-protease cleaves at glutamic acid residues
- Pepsin cleaves randomly, but at acid pH

See http://www.abrf.org/JBT/1998/September98/sep98m_r.html

Searching databases with peptide masses to identify proteins

Best site is at www.matrixscience.com

The program (MASCOT) can search the OWL or NCBI databases using a set of tryptic peptide masses, or the fragment ions (specified or unspecified) of peptides

Presents the expected set of tryptic peptides for each matched protein

S. Barnes-UAB 1/13/09

Choice of peptidase

- Analogous to DNA restriction enzymes
- Tryptic peptide fingerprinting may identify, not one, but several highly related protein candidates (e.g., actins)
- Inspection of the sequences may reveal that there is a difference at one residue that distinguishes between two candidates.
- If for instance it is a glutamate, then use of Glu-C or V8-protease may enable the two proteins to be correctly identified
- INSPECT sequences carefully

Sequence of β -lactoglobulin

MKCLLLALAL TCGAQALIVT QTMKGLDIQK VAGTWYSLAM AASDISLLDA QSAPLRVYVE ELKPTPEGDL EILLQKWENG ECAQKKIIAE KTKIPAVFKI DALNENKVLV LDTDYKKYLL FCMENSAEPE QSLACQCLVR TPEVDDEALE KFDKALKALP MHIRLSFNPT QLEEQCHI

GLDIQK CLI	LLALALTCG	AQALIVI	готмк	VYVE	ELK
MK VAGTV	VYSLAMAAS	DISLLD	AQSAPLR		TK
ALK YLL	FCMENSAEF	PEQSLAC	QCLVR	K	K
WENGECAQK	PTPEGDL	EILLQK	v	LVLDI	DYK
FDK	IPAVFK	ALPMH	IR	11	AEK
TPEVDDEALEK	IDAI	LNENK	LSFNPT	QLEEQ	CHI
S. Barnes-UAB 1/13/09					

Peptides from digestion with Glu-C

MKCLLLALALTCGAQALIVTQTMKGLD

IQKVAGTWYSLAMAASD ISLLD AQSAPLRVYVE

E LKPTPE GD LE ILLQKWE NGE CAQKKIIAE

KTKIPAVFKID ALNE NKVLVLD TD YKKYLLFCME

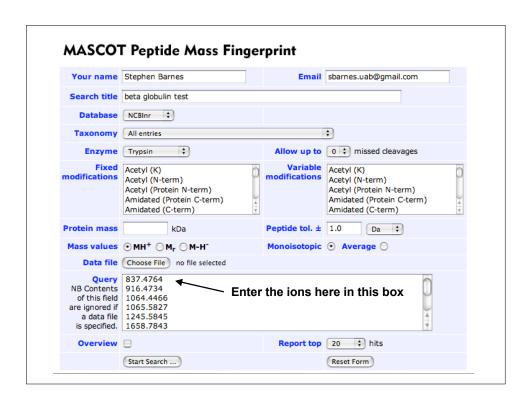
NSAE PE QSLACQCLVRTPE VD D E ALE KFD

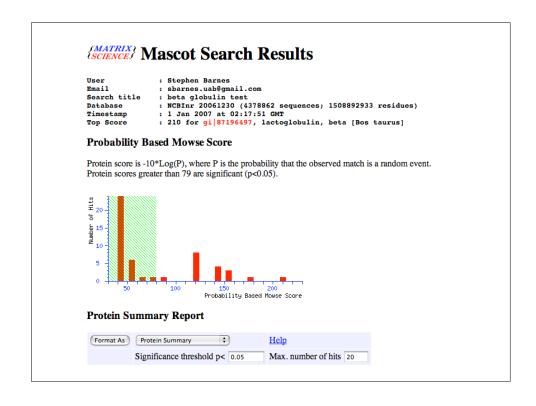
KALKALPMHIRLSFNPTQLE E QCHI

S. Barnes-UAB 1/13/09

Amino acid residue masses

Alanine	71.037	Leucine	113.084
Arginine	156.101	Lysine	128.094
Asparagine	114.043	Methionine	131.040
Aspartic acid	115.027	Phenylalanine	147.068
Cysteine	103.009	Proline	97.053
Glutamic acid	129.043	Serine	87.032
Glutamine	128.058	Threonine	101.048
Glycine	57.021	Tryptophan	186.079
Histidine	137.059	Tyrosine	163.063
Isoleucine	113.084	Valine	99.068


The m/z value of a peptide [M+H] $^{+}$ is the sum of the residue masses plus 18.015 for H $_{2}$ O plus 1.008. So, what is it for ISLLD?


113.084 + 87.032 + 113.084 +113.084 + 115.027 + 18.015 + 1.008 = 560.334

Expected peptides from trypsin and Glu-C digestion of bovine β-lactoglobulin

837.4764	800.4876
916.4734	929.5455
1064.4466	1003.5605
1065.5827	1232.6634
1245.5845	1259.7722
1658.7843	1337.6632
2275.2586	1447.7032
2313.2588	1811.8996
2647.2023	2307.3006
2707.3760	2819.5265

Assumes all cuts are complete, there is no oxidation of Met residues, and Cys residues are unmodified

Protein records provided by MASCOT search

```
Accession
                                                                   Mass
                                                                                           Score
                                                                                                                  Description
lactoglobulin, beta [Bos taurus]
Chain, Bovine Beta-Lactoglobulin Complexed With Palmitate, Lattice Z
lactoglobulin beta
beta-lactoglobulin - water buffalo
beta-lactoglobulin [Bos taurus]
Beta-lactoglobulin precursor (Beta-LC)
beta-lactoglobulin
Chain A, Bovine Beta-Lactoglobulin, Lattice X
beta-lactoglobulin [Bubalus bubalis]
beta-lactoglobulin
Beta-lactoglobulin
Beta-lactoglobulin Precursor (Beta-LC)
Chain A, Structural Changes Accompanying Ph-Induced Dissociation Of The lactoglobulin beta
                                                                                                                    Description
                Accession
gi 87196497
gi 4388846
gi 223780
gi 72079
gi 520
                                                                   19870
                                                                   18269
                                                                                                   179
                                                                                                  152
152
150
                                                                   18165
4. gi|72012
5. gi|520
6. gi|20178290
7. gi|165839
8. gi|2194088
9. gi|110612608
10. gi|125912
12. gi|7245834
13. gi|229460
14. gi|4388939
15. gi|4388939
16. gi|54037712
17. gi|57164367
18. gi|90108547
19. gi|71980384
20. gi|26352113
                                                                    19908
                                                                   20010
                                                                                                   148
                                                                                                  148
147
144
                                                                   19934
18297
                                                                   19891
                                                                                                   126
125
124
                                                                   17156
                                                                    18363
                                                                                                                    Chain , Structural Basis Of The Tanford Transition Of Bovine Beta-Lacto
Chain X, The Cysl21ser Mutant Of Beta-Lactoglobulin
                                                                   18355
                                                                                                   124
                                                                   18355
18339
                                                                                                                   Chain X, The Cysiziser Mutant Or Beta-Lactoglobi
Beta-Lactoglobulin (Beta-LC)
beta-Lactoglobulin [Ovis aries]
Chain A, Reindeer Beta-Lactoglobulin
beta-Lactoglobulin [Rangifer tarandus tarandus]
unnamed protein product [Mus musculus]
                                                                   18139
                                                                                                   120
                                                                   19908
                                                                                                   117
82
80
                                                                   20035
    20. gi 26352113
                                                                   13020
```

Comparison of observed and predicted tryptic peptides

```
        gi | 87196497
        Mass: 19870
        Score: 210
        Expect: 4.4e-15
        Queries matched: 10

        lactoglobulin, beta [Bos taurus]
        Delta Start
        End Miss
        Peptide

        837.4764
        836.4691
        836.4691
        0.0001
        158 - 164
        0
        K.ALPMHIR.L

        916.4734
        915.4661
        915.4661
        -0.0000
        100 - 107
        0
        K.IDALNENK.V

        1064.4466
        1063.4393
        1063.4393
        0.0001
        77 - 85
        0
        K.WENGECAQK.K

        1065.5827
        1064.5754
        1064.5753
        0.0001
        108 - 116
        0
        K.VLVLDTDYK.K

        1245.5845
        1244.5772
        1244.5772
        0.0000
        141 - 151
        0
        R.ISFNPTQLEEQCHI.-

        2275.2586
        2274.2513
        2274.2513
        0.0000
        3 - 24
        0
        K.CLLLALALTCGAQALIVTQTMK.G

        2313.2588
        2312.2515
        2312.2515
        0.0001
        57 - 76
        0
        R.VYVEELKPTPEGDLEILLQK.W

        2647.2023
        2646.1950
        2646.1950
        0.0001
        118 - 140
        0
        K.VLGTWYSLAMAASDISLLDAQSAPLR.V
```

S. Barnes-UAB 1/13/09

Search against SwissProt database

```
Accession Mass Score Description

1. LACB BOVIN 19870 271 Beta-lactoglobulin precursor (Beta-LG) (Allergen Bos d 5) - Bos taurus (Bovine)

2. LACB BUBBU 2010 197

3. LACB CAPHI 19962 135 Beta-lactoglobulin precursor (Beta-LG) - Bubalus bubalis (Domestic water buffalo)

4. LACB CAPHI 19962 135 Beta-lactoglobulin precursor (Beta-LG) - Capra hircus (Goat)

5. LACB SHEEP 19908 102 Beta-lactoglobulin (Beta-LG) - Ovis orientalis musimon (Mouflon)

6. YMMS YEAST 52055 41 Hypothetical 52.1 kDa protein in SMYI-MUD2 intergenic region - Saccharomyces cerevi

7. TCPR YUBCE 1627 40 Toxin corequilated pilus biosynthesis protein H (TCP pilus biosynthesis protein tcpf

8. POLG DENZ2 54291 39 Genome polyprotein [Contains: Envelope protein E] (Fragment) - Dengue virus type 2

9. PFPI PPI PNRO 1840 38 Protein vir99 precursor - Agrobacterium tumefacienes (strain C58 / ATCC 33970)

11. YEST YEAST 71812 34 Protein vir99 precursor - Agrobacterium tumefacienes (strain C58 / ATCC 33970)

12. YHR7 YEAST 71812 34 TPR repeat-containing protein YHR117W - Saccharomyces cerevisiae (Baker's yeast)

13. LGB LOTAA 15745 34 Leghemoglobin - Lotus Japonicus

14. YH31 YACCY 1515 34 Hypothetical 13.6 kDa Hindlin-C protein - Vaccinia virus (strain Western Reserve / Protein LILLO 1515 34 Hypothetical 13.6 kDa Hindlin-C protein - Vaccinia virus (strain Western Reserve / Protein LILLO 1515 34 Histone H2A.1 (GCH2A) - Lillum longiflorum (Trumpet Lilly)

17. RS12 BRUME 1863 33 30S ribosomal protein S12 - Brucella abortus (strain 2308)

18. RS12 BRUME 1866 33 30S ribosomal protein S12 - Brucella abortus (strain 2308)

19. RS12 BRUME 1866 33 30S ribosomal protein S12 - Brucella abortus (strain 2308)
```

Things to consider when doing peptide mass fingerprinting

- Proteins can be oxidized both biologically (real data) and during the workup
- Treat the protein or the peptide digest with a reagent that reacts with Cys sulhydryl groups - e.g., iodoacetamide, iodoacetic acid, N-ethylmaleimide or 4-vinylpyridine. Cysteines may also have reacted with acrylamide in the gel.
- Set the options in the fixed or variable modification boxes before searching
- Allow for at least one missed cleavage trypsin does not cut when Lys or Arg are followed by a Pro residue

S. Barnes-UAB 1/13/09

Other web sites for peptide analysis

- http://prowl.rockefeller.edu/
 - Choose ProFound
- http://prospector.ucsf.edu/
 - Choose MS-fit

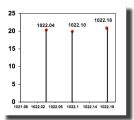
Further information on identified protein

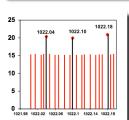
- Take the protein identifier number:
 - For bovine β-lactoglobulin it is gi|520
 - Go to http://www.ncbi.nlm.nih.gov
 - Under protein, paste in the gi number
 - A link to the protein will appear
 - Click on Blink this is similar to BLAST, but better
 - Go to Structure: enter beta lactoglobulin bos taurus
 - This generates 21 different crystal structure records select #18 - 1CJ5
 - To view a 3D-image of the protein, first download Cn3D from the NCBI site or RasMol
 - · Bring a picture of beta-lactoglobulin to the next class

S. Barnes-UAB 1/13/09

Examples for homework (due Jan 20)

- Identify the following proteins from these MALDI ions (corrected for isotope effects):
 - 2280.11, 1700.89, 1393.71, 1385.74, 1164.60, 1087.49, 1007.54, 969.44, 916.50, 865.44, 813.40 (human)
 - 2582.21, 2511.17, 1677.96, 1647.77, 1581.81, 1068.48, 1018.49, 1011.58, 1001.45 (rat)
 - 1993.90, 1964.91, 1802.88, 1756.90, 1738.67, 1716.91, 1668.68, 1581.82, 1510.72, 1497.76, 1428.66, 1386.68, 1383.69, 1250.62, 1241.69, 1209.60, 1172.60, 1161.69, 1140.56, 1131.65, 1128.62, 1107.49, 1093.52, 1027.46, 1026.51, 1006.50 (mouse)
- Set the number of missed tryptic cuts to 0 and try varying the mass accuracy from 0.02 to 1.0 Da. How does this alter the MOWSE score?
- Do any of these have crystal structures?

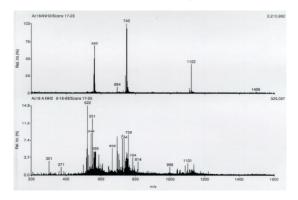

Take home question (due Jan 20)


- 1. What is the monoisotopic mass of human calgranulin A?
 - Hint: workout the empirical formula of human calgranulin A - its sequence can be obtained from record P05109 at http://www.ncbi.nlm.nih.gov
- 2. What is the molecular weight of the most abundant species of calgranulin A?
 - Hint: assume that the abundance of ¹³C is 1.11% of total carbon atoms - do not worry about ²H or other isotopes

S. Barnes-UAB 1/13/09

Blurring of protein space

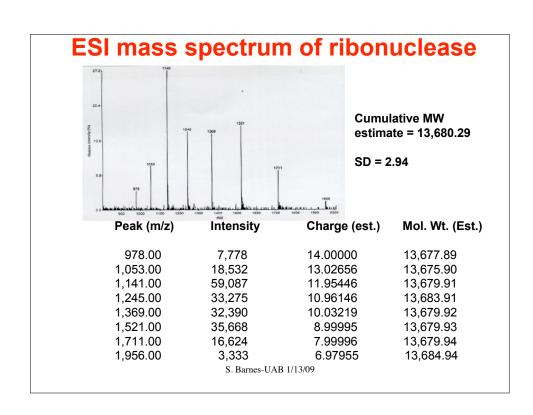
- Identification using MALDI-TOF with MASCOT depends on:
 - Number of peptides recognized as being part of the protein
 - The mass accuracy of the peptides that are recognized
 - Pre-2000, an accuracy of better than 0.05 Da in a 1000 Da peptide (i.e., 50 ppm) was sufficient to distinguish the unknown protein from the other proteins in the databases at that time
 - Now, the protein information space has become more dense and MALDI-TOF is no longer adequate
 - Previously identified proteins may not be correct



Electrospray ionization

- ESI-MS is very sensitive to the presence of electrolyte species -
 - these ionize more easily than solutes and may also form adducts with solutes
- In ESI-MS, multiple charge states are possible
 - These lead to more accurate MWs
- This is a softer ionization than MALDI where the UV laser at 337 nm alters the chemistry of modifications such as Tyr-NO₂ and Cys-SNO

S. Barnes-UAB 1/13/09


ESI-MS and purity of peptides

Guarantees of purity based on observation of "a single peak by reverse-phase HPLC" and by "it gave the correct sequence when analyzed by Edman degradation" are hollow. The lower spectrum was of a "pure" HPLC peak. The method of purification was amended and the upper spectrum was obtained

lonizing proteins and peptides

- *H₃NCHR₁CO(NHCHR_nCO)_nNHCHR₂COOH is the ion that's found in dilute acid solution
- If there are internal basic residues, then the ions will be of the form [M+nH]ⁿ⁺, where n = 1, 2, etc.
- A tryptic peptide will have a N-terminal amino group and an amino group from Arg or Lys
 - If the peptide has a mol. wt. of 1000 Da, then the singly charged ion will have a m/z of 1001, whereas the doubly charged ion has a m/z of 501

Calculation of molecular weights and ion states

 For two ions in a series for a peptide of molecular weight M, the lower m/z value (x) will be for the n+1 ion state and the larger m/z value (y) will be for the n+ ion state.

```
- (1) (M+n)/n = y
- (2) (M+n+1)/(n+1) = x
```

Hence

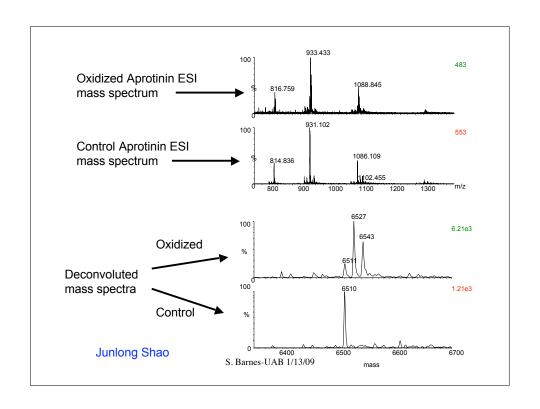
- (3) M+n = ny and M = ny-n
- (4) M+n+1 =
$$(n+1)x$$
 and M = $(n+1)x-(n+1)$

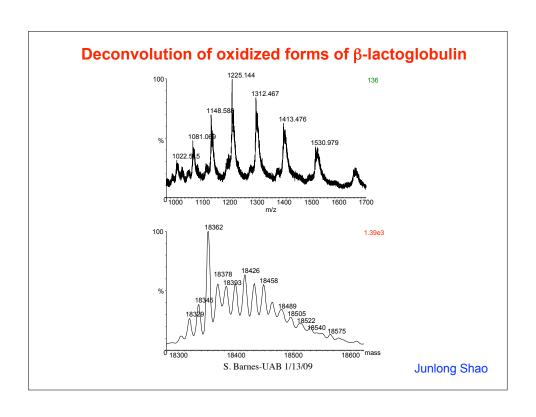
Hence

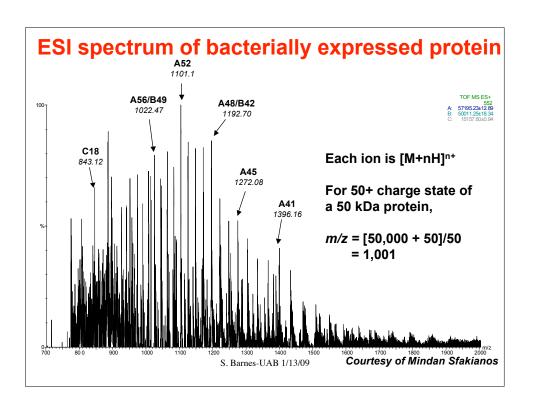
```
- ny-n = (n+1)x - (n+1)

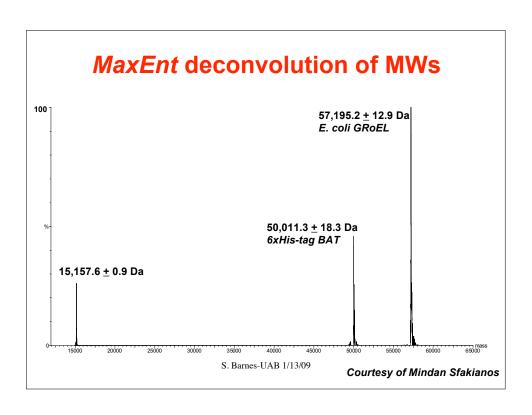
- ny-n-xn+n = x-1

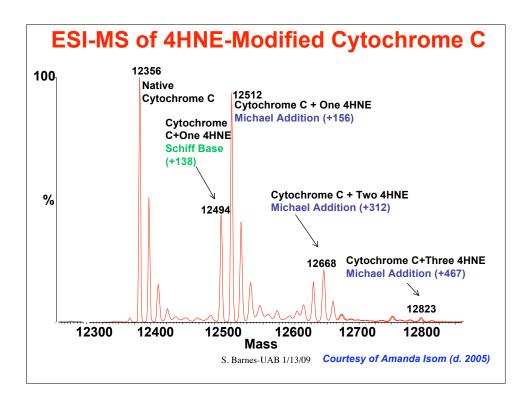
- n(y-x) = x-1


- n = (x-1)/(y-x)
```


 The value of n can then be substituted in equation (1) to obtain the molecular weight of the peptide


S. Barnes-UAB 1/13/09

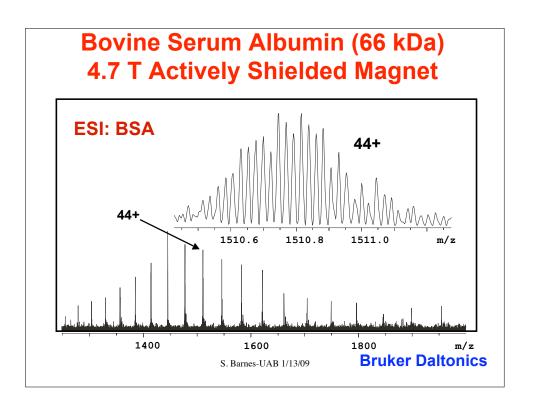

Deconvolution of MS data

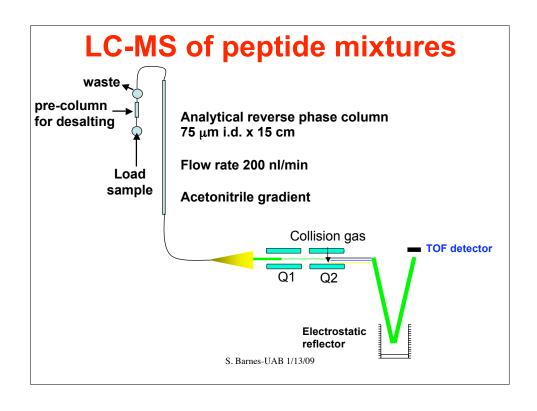

- When several proteins are present, then their multiply charged ion clusters overlap
- Can this be overcome? yes, use the MaxEntropy program provided by Micromass

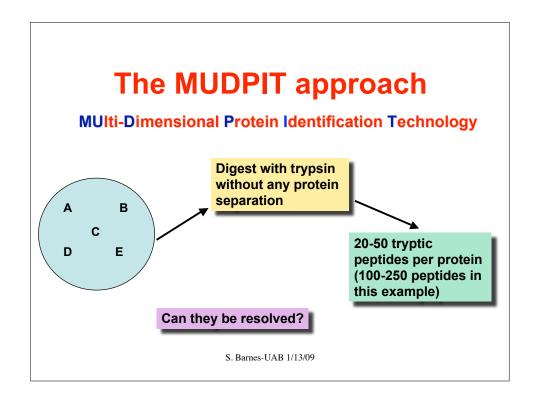
Summary of determining MW by ESI

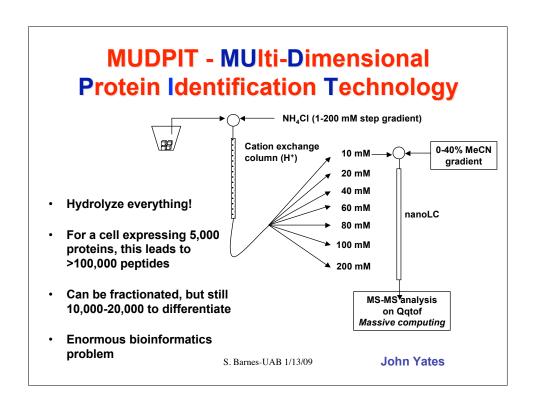
- The multiple charge states of a protein allow:
 - Mol Wt of large proteins to be estimated
 - It's a super SDS-PAGE gel
- Important to remember that the protein sample must be free of salt
 - Typically, a sample is cleaned up on a short reverse-phase column prior to electrospray
 - Alternative, use ammonium acetate as buffer

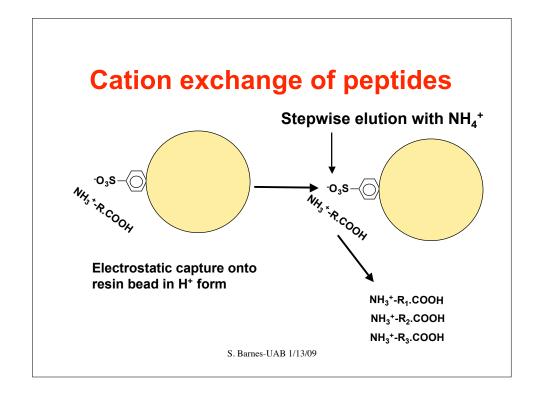
Studying high molecular weight complexes by ESI


- Most instrument ESI interfaces have a limited m/z range - up to 3,000
- In protein complexes water, and hence H+ ions, is "squeezed" out, thereby substantially increasing observed m/z values
- Interfaces that pass ions with m/z values above 10,000 have been designed

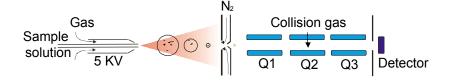

S. Barnes-UAB 1/13/09


nanoESI-MS of HMW complexes of small heat shock proteins Α TaHSP16.9 Note the large m/z values (6,000-7,000) for the observed ions 10000 197000 199000 201000 The ESI data were deconvoluted to reveal В the distribution of the PsHSP18.1 masses of the complexes 212000 214250 216500 Sobbott et al., J Biol S. Barnes-UAB 1/13/09 Chem 277:38921

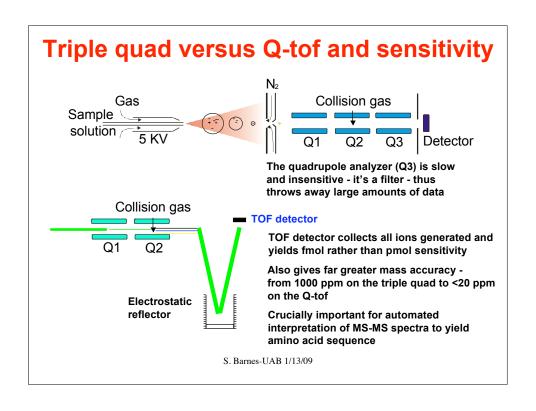

Use of FT-MS in ESI of proteins

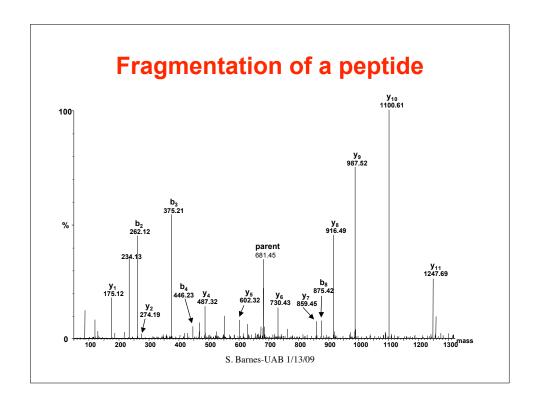

- The very high resolving power of FT-MS enables a direct measure of charge state of an individual ion since each peptide or polypeptide will have several/many isotope peaks
- The distance in Da between successive isotope peaks of a multiply charged ion is the reciprocal of the number of charges

Pros/Cons of laying down LC or EC separations on matrix plate


- Allows off-line analysis both in real time and then in a retrospective mode
- MALDI-TOF analysis is very fast
- Can also do TOF-TOF MS-MS analysis
- BUT what happens chemically on the acidic environment on the surface of the plate during storage?
- Also, can the laser beam cause chemical changes?

Sequencing of peptides


- Using tandem mass spectrometry in a triple quadrupole, Q-tof, or ion trap instrument, the parent ion is first selected in the first quadrupole
- The parent ion is collided with argon gas and it breaks into fragments (daughter ions)
- By identifying the daughter ions, the peptide amino acid sequence is inferred


S. Barnes-UAB 1/13/09

Tandem mass spectrometry on a triple quadrupole instrument

- · Daughter ion spectra
- Parent ion spectra
- Multiple reaction ion scanning

